big science

scientific research requiring large capital expenditure.

* * *

      style of scientific research developed during and after World War II that defined the organization and character of much research in physics and astronomy and later in the biological sciences. Big Science is characterized by large-scale instruments and facilities, supported by funding from government or international agencies, in which research is conducted by teams or groups of scientists and technicians. Some of the best-known Big Science projects include the high-energy physics facility CERN, the Hubble Space Telescope, and the Apollo program.

      The term Big Science first appeared in a 1961 article in Science magazine, titled “Impact of Large-Scale Science on the United States,” by physicist and Oak Ridge National Laboratory director Alvin Weinberg. The article described Big Science as part of the new political economy of science produced by World War II, during which the U.S. government sponsored gigantic research efforts such as the Manhattan Project, the American atomic bomb program, and the Radiation Laboratory, a centre for radar research at the Massachusetts Institute of Technology (MIT). Weinberg was not only describing a new form of scientific research; his concept was an expression of nostalgia for “Little Science,” a world of independent, individual researchers free to work alone or with graduate students on problems of their own choosing. Whether or not the world of Little Science as imagined by Weinberg ever existed became irrelevant; high-technology warfare had turned support of scientific research into a national security priority and promised to turn scientists and engineers into beneficiaries of Cold War largesse.

      Big Science shared many characteristics of other industrial and government enterprises. Large scale, expensive, and heavily bureaucratic, Big Science's most ambitious projects—satellites and space probes, particle accelerators, and telescopes—rivaled those of military and industrial institutions in their size and complexity. Weinberg argued that they were the contemporary equivalents of Egyptian pyramids or Gothic cathedrals. Indeed, some countries founded entire cities—such as the United States' Oak Ridge, Japan's Tsukuba Academic City (Tsukuba Science City), and the Soviet Union's Akademgorodok—to support scientific research. For researchers, the advent of Big Science signaled a transformation of the scientist from an independent researcher into a member of a hierarchically organized group. Scientists at facilities such as CERN found themselves working on projects that brought together hundreds of scientists, engineers, technicians, and administrators. This bureaucratic culture in turn reshaped scientific careers by making it possible to succeed through administrative skill, fund-raising ability, and managerial talent, as well as scientific brilliance. It also joined the trend in higher education to emphasize research over teaching for scientists at research universities. The high cost of scientific instruments, facilities, and payrolls made Big Science affordable only to government agencies or international consortia, drawing influence away from the universities, societies, and philanthropies that had been the main supporters of scientific research before World War II.

      The products of Big Science also differed from those of preceding forms of scientific research. The literary results of Big Science were articles “written” by dozens or even hundreds of coauthors, rather than individuals or a few collaborators. As important as the published reports are the machine-readable archives of data generated by projects, which can be used by researchers long after the instruments that produced them are rendered obsolete.

      With the end of the Cold War, the fortunes and complexion of Big Science began to change. The phenomenon had never been without its critics: its impact on science education was mixed, and during the 1960s American students at a number of campuses protested military-sponsored research conducted at Big Science facilities such as Charles Stark Draper's Instrumentation Laboratory at MIT. The withdrawal of funding for the Superconducting Super Collider in 1993 marked the U.S. government's retreat from its formerly lavish sponsorship of high-energy physics. The development at the National Aeronautics and Space Administration (NASA) of smaller, lower-cost satellites in the 1990s was likewise motivated by demands to conduct research on a more economical scale. At the same time, Big Science began to spread to the biomedical disciplines via the Human Genome Project. However, in that project, work was decentralized among a number of research sites, rather than concentrated in a single large facility. Further, its goal was not a set of research papers but the production of an archive, the sequence of the human genome. Finally, the project was supported in part by private firms hoping to use the archive in their own efforts to develop new pharmaceuticals and other medical products.

Michael Aaron Dennis

Additional Reading
Alvin Weinberg, “Impact of Large-Scale Science on the United States,” Science, 134:161–64 (July 21, 1961), is the locus classicus for the term Big Science, as well as a fascinating and revealing essay. Peter Galison and Bruce Hevly (eds.), Big Science: The Growth of Large-Scale Research (1992), is an excellent collection of articles addressing the topic across an array of contexts and disciplines. Peter Galison, Image and Logic: A Material Culture of Microphysics (1997), charts the transformation of physics during the post-World War II era and the introduction of industrial methods as a result of military patronage and technological development. Robert W. Smith, The Space Telescope: A Study of NASA, Science, Technology, and Politics (1989; reissued 1993), addresses the complex interplay of knowledge and politics in a specific Big Science project. The Human Genome Project is the subject of Daniel J. Kevles and Leroy Hood (eds.), The Code of Codes: Scientific and Social Issues in the Human Genome Project (1992).Michael Aaron Dennis

* * *

Universalium. 2010.

Look at other dictionaries:

  • big science — noun uncount scientific research that is expensive because it needs a lot of equipment and workers and so is usually supported by large companies or by the government …   Usage of the words and phrases in modern English

  • big science — n. scientific research or projects requiring considerable funding and personnel …   English World dictionary

  • Big Science — This article is about the term. For the album, see Big Science (album). Big Science is a term used by scientists and historians of science to describe a series of changes in science which occurred in industrial nations during and after World War… …   Wikipedia

  • Big Science — Die Großforschung oder Big Science bezeichnet die außerhalb von Universitäten, quasi industriell betriebene Form der Wissenschaft, die im Wissenschaftsbetrieb seit etwa Mitte des 20. Jahrhunderts verstärkt anzutreffen ist. Dazu zählen vor allem… …   Deutsch Wikipedia

  • big science — big′ sci′ence n. cvb scientific research requiring large capital expenditure • Etymology: 1960–65 …   From formal English to slang

  • big science — noun Usage: often capitalized B&S Date: 1961 large scale scientific research consisting of projects funded usually by a national government or group of governments …   New Collegiate Dictionary

  • big science — UK / US noun [uncountable] scientific research that is expensive because it needs a lot of equipment and workers and so is usually supported by large companies or by the government …   English dictionary

  • big science — noun scientific research that requires massive capital investment but is expected to yield very significant results • Hypernyms: ↑scientific research, ↑research project …   Useful english dictionary

  • Big Science (album) — Infobox Album Name = Big Science Type = Studio album Artist = Laurie Anderson Released = 1982 June 18, 2007 (reissue) Recorded = The Lobby, The Hit Factory, New York City Genre = Avant garde Experimental music Pop music Length = 38:19 Label =… …   Wikipedia

  • Topic outline of Big Science — Big Science is a term used by scientists and historians of science to describe a series of changes in science which occurred in industrial nations during and after World War II. The following outline is provided as an overview of and introduction …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.