﻿

# fuzzy logic

n.
< fuzzy (set), coined (1965) by L. A. Zadeh, U.S. computer scientist
a type of logic used in computers and other electronic devices for processing imprecise or variable data: in place of the traditional binary values, fuzzy logic employs a range of values for greater flexibility

* * *

Logic based on the concept of fuzzy sets, in which membership is expressed in varying probabilities or degrees of truth
that is, as a continuum of values ranging from 0 (does not occur) to 1 (definitely occurs). As additional data are gathered, many fuzzy-logic systems are able to adjust the probability values assigned to different parameters. Because some such systems appear able to learn from their mistakes, they are often considered a crude form of artificial intelligence. The term and concept date from a 1965 paper by Lotfi A. Zadeh

born 1921

.

Fuzzy-logic systems achieved commercial application in the early 1990s. Advanced clothes-washing machines, for example, use fuzzy-logic systems to detect and adapt to patterns of water movement during a wash cycle, increasing efficiency and reducing water consumption. Other products using fuzzy logic include camcorders, microwave ovens, and dishwashers. Other applications include expert systems, self-regulating industrial controls, and computerized speech-and handwriting-recognition programs.

* * *

Introduction

in mathematics, a form of logic based on the concept of a fuzzy set. Membership in fuzzy sets is expressed in degrees of truth—i.e., as a continuum of values ranging from 0 to 1. In a narrow sense, the term fuzzy logic refers to a system of approximate reasoning, but its widest meaning is usually identified with a mathematical theory of classes with unclear, or “fuzzy,” boundaries. Control systems based on fuzzy logic are used in many consumer electronic devices in order to make fine adjustments to changes in the environment. Fuzzy logic concepts and techniques have also been profitably used in linguistics, the behavioral sciences, the diagnosis of certain diseases, and even stock market analysis.

Fuzzy sets
Most concepts used in everyday language, such as “high temperature,” “round face,” or “aquatic animal,” are not clearly defined. In 1965 Lotfi Zadeh, an engineering professor at the University of California at Berkeley, proposed a mathematical definition of those classes that lack precisely defined criteria of membership. Zadeh called them fuzzy sets. Membership in a fuzzy set may be indicated by any number from 0 to 1, representing a range from “definitely not in the set” through “partially in the set” to “completely in the set.” For example, at age 45 a man is neither very young nor very old. This makes it difficult in traditional logic (see laws of thought (thought, laws of)) to say whether or not he belongs to the set of “old persons.” Clearly he is “sort of” old, a qualitative assessment that can be quantified by assigning a value, or degree of membership, between 0 and 1—say 0.30—for his inclusion in a fuzzy set of old persons.

Fuzzy sets are a generalization of ordinary sets, and they may be combined by operations similar to set union, intersection, and complement. However, some properties of ordinary set operations are no longer valid for fuzzy sets. For instance, the intersection of a fuzzy subset and its complement may be nonempty. In a logic based on fuzzy sets, the principle of the excluded middle is therefore invalid.

Fuzziness as defined by Zadeh is nonstatistical in nature—it represents vagueness due to human intuition, not uncertainty in the probabilistic sense. Membership in a fuzzy set is usually represented graphically. Membership functions are determined by both theoretical and empirical methods that depend on the particular application, and they may include the use of learning and optimization techniques such as neural networks (neural network) or genetic algorithms (see artificial intelligence: Evolutionary computing (artificial intelligence)).

Fuzzy control
In technical applications, fuzzy control refers to programs or algorithms using fuzzy logic to allow machines to make decisions based on the practical knowledge of a human operator. The fundamental problem of automatic control is that of determining the appropriate response of the system, or production plant, for any given set of conditions. Conventional control techniques are based on explicit mathematical descriptions of the system, typically a set of differential equations (differential equation) involving a small number of variables. Fuzzy control, on the other hand, does not require an exact theoretical model but only the empirical knowledge of an experienced operator. This knowledge is then expressed as a set of linguistic rules of the form “if [present conditions], then [action to be taken].” For example, “if temperature is low and image density is high, then electric charge should be medium” is one of nine heuristic rules governing the smooth operation of a photocopier. The ambiguous terms—low temperature and high density—are represented as fuzzy sets, and the various linguistic rules are represented as mathematical relations between these sets. The control strategy can then be encoded as an algorithm or computer program. During the operation of the machine, sensors measure the current values of the input variables (temperature and image density, in this case), and a computer or electronic chip then determines the appropriate values of the action variables (e.g., electric charge).

E.H. Mamdani, while a lecturer at Queen Mary College, London, working in the design of learning systems, is credited with implementing the first fuzzy logic controller in the early 1970s. Mamdani and his student Seto Assilian wrote down 24 heuristic rules for controlling the operation of a small steam engine and boiler combination. They then used fuzzy sets to translate these linguistic rules into an algorithm that successfully controlled the system, thus demonstrating the power of the new approach.

Japan's fuzzy boom
Commercial applications of fuzzy logic began to appear in the early 1980s, particularly in Japan, which soon became the centre of academic and industrial research on fuzzy systems. For example, fuzzy logic has been used in the control of cement manufacture and water purification processes, and a fuzzy controller designed by engineers from Hitachi, Ltd., was used to operate the automatic subway trains of the Japanese city of Sendai. Throughout the decade, Japanese consumers were offered scores of goods featuring fuzzy logic components. These included television sets that adjusted volume and contrast depending on noise level and lighting conditions; “smart” washing machines that selected the optimal washing cycle on the basis of quantity and quality of dirt and load size; fuzzy microwave ovens and rice cookers that adjusted for humidity; and video cameras with fuzzy chips that properly adjusted focus and lighting with several objects in the picture. For marketing purposes, the term fuzzy was presented as synonymous with “efficient operation requiring minimal human intervention.”

The Japanese frenzy for fuzzy products eventually subsided, but fuzzy logic is still very much present, if less conspicuously, in a number of consumer products. The automatic transmissions of certain automobiles, for instance, contain a fuzzy component that senses driving style and engine load so as to select the best gear.

Nonengineering applications
Practical applications of fuzzy logic are not restricted to engineering and related fields. In medicine, expert systems (expert system) using fuzzy inference can help doctors diagnose diabetes and prostate cancer. Management science, stock market analysis, information retrieval, linguistics, and behavioral sciences are just a few of the other domains where fuzzy logic concepts and techniques have been profitably used.

The late 1990s witnessed the development of hybrid systems, which combine the advantages of two or more computing techniques. So-called neuro-fuzzy systems integrate fuzzy logic and artificial neural networks, enabling a certain form of learning. Systems with neuro-fuzzy components may be found in fields such as stock market prediction, intelligent information systems (information system), and data mining (see database).

Arturo Sangalli

General introductions to the ideas and applications of fuzzy logic include Bart Kosko, Fuzzy Thinking: The New Science of Fuzzy Logic (1993); and Arturo Sangalli, The Importance of Being Fuzzy (1998). More technical introductions include George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications (1995); Jyh-Shing Roger Jang, Chuen-Tsai Sun, and Eiji Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence (1997); and James J. Buckley and Esfandiar Eslami, An Introduction to Fuzzy Logic and Fuzzy Sets (2002).

* * *

Universalium. 2010.

### Look at other dictionaries:

• Fuzzy logic — is a form of multi valued logic derived from fuzzy set theory to deal with reasoning that is approximate rather than precise. Just as in fuzzy set theory the set membership values can range (inclusively) between 0 and 1, in fuzzy logic the degree …   Wikipedia

• fuzzy logic — ☆ fuzzy logic n. [< fuzzy (set), coined (1965) by L. A. Zadeh, U.S. computer scientist] a type of logic used in computers and other electronic devices for processing imprecise or variable data: in place of the traditional binary values, fuzzy… …   English World dictionary

• fuzzy logic — fuzzy sets/fuzzy logic …   Philosophy dictionary

• fuzzy logic — n [U] technical a type of ↑logic which is used to try to make computers think like humans …   Dictionary of contemporary English

• fuzzy logic — noun uncount COMPUTING a type of LOGIC used in computers that are designed to behave like humans …   Usage of the words and phrases in modern English

• Fuzzy Logic — Fuzzylogik (engl. fuzzy ‚verschwommen‘, fuzzy logic, fuzzy theory ‚verschwommene Logik‘ bzw. ‚verschwommene Theorie‘) ist eine Theorie, welche vor allem für die Modellierung von Unsicherheiten und Unschärfen von umgangssprachlichen Beschreibungen …   Deutsch Wikipedia

• fuzzy logic — noun a form of mathematical logic in which truth can assume a continuum of values between 0 and 1 • Hypernyms: ↑symbolic logic, ↑mathematical logic, ↑formal logic * * * fuzzy logic noun A form of logic used in computers in which truth values… …   Useful english dictionary

• Fuzzy Logic — Fuz|zy|lo|gic, die; , Fuz|zy Lo|gic, die; [ fazilɔd̮ʒɪk , auch: fa… lɔ…]: Fuzzylogik. * * * Fuzzy Logic   [dt. »fusselige Logik«, »unscharfe Logik«], eine Erweiterung der klassischen, booleschen Logik, bei der anstelle von nur zwei… …   Universal-Lexikon

• Fuzzy logic — Logique floue La logique floue (fuzzy logic, en anglais) est une technique utilisée en intelligence artificielle. Elle a été formalisée par Lotfi Zadeh en 1965 et utilisée dans des domaines aussi variés que l automatisme (freins ABS), la… …   Wikipédia en Français

• fuzzy logic — A system which mathematically models complex relationships which are usually handled in a vague manner by language. Under the title of Fuzzy Logic falls formal fuzzy logic (a multi valued form of logic), and fuzzy sets. Fuzzy sets measure the… …   Financial and business terms