Germain, Sophie

▪ French mathematician
in full  Marie-Sophie Germain 
born April 1, 1776, Paris, France
died June 27, 1831, Paris

      French mathematician who contributed notably to the study of acoustics, elasticity, and the theory of numbers (number theory).

      As a girl Germain read widely in her father's library and then later, using the pseudonym of M. Le Blanc, managed to obtain lecture notes for courses from the newly organized École Polytechnique in Paris. It was through the École Polytechnique that she met the mathematician Joseph-Louis Lagrange (Lagrange, Joseph-Louis, comte de l'Empire), who remained a strong source of support and encouragement to her for several years. Germain's early work was in number theory, her interest having been stimulated by Adrien-Marie Legendre (Legendre, Adrien-Marie)'s Théorie des nombres (1789) and by Carl Friedrich Gauss (Gauss, Carl Friedrich)'s Disquisitiones Arithmeticae (1801). This subject occupied her throughout her life and eventually provided her most significant result. In 1804 she initiated a correspondence with Gauss under her male pseudonym. Gauss only learned of her true identity when Germain, fearing for Gauss's safety as a result of the French occupation of Hannover in 1807, asked a family friend in the French army to ascertain his whereabouts and ensure that he would not be ill-treated.

      In 1809 the French Academy of Sciences (Sciences, Academy of) offered a prize for a mathematical account of the phenomena exhibited in experiments on vibrating plates conducted by the German physicist Ernst F.F. Chladni. In 1811 Germain submitted an anonymous memoir, but the prize was not awarded. The competition was reopened twice more, once in 1813 and again in 1816, and Germain submitted a memoir on each occasion. Her third memoir, with which she finally won the prize, treated vibrations of general curved as well as plane surfaces and was published privately in 1821. During the 1820s she worked on generalizations of her research but, isolated from the academic community on account of her gender and thus largely unaware of new developments taking place in the theory of elasticity, she made little real progress. In 1816 Germain met Joseph Fourier (Fourier, Joseph, Baron), whose friendship and position in the Academy helped her to participate more fully in Parisian scientific life, but his reservations about her work on elasticity eventually led him to distance himself from her professionally, although they remained close friends.

      Meanwhile Germain had actively revived her interest in number theory and in 1819 wrote to Gauss outlining her strategy for a general solution to Fermat's last theorem, which states that there is no solution for the equation xn + yn = zn if n is an integer greater than 2 and x, y, and z are nonzero integers. She proved the special case in which x, y, z, and n are all relatively prime (have no common divisor except for 1) and n is a prime smaller than 100, although she did not publish her work. Her result first appeared in 1825 in a supplement to the second edition of Legendre's Théorie des nombres. She corresponded extensively with Legendre, and her method formed the basis for his proof of the theorem for the case n = 5. The theorem was proved for all cases by the English mathematician Andrew Wiles (Wiles, Andrew John) in 1995.

June Barrow-Green

Additional Reading
Louis L. Bucciarelli and Nancy Dworsky, Sophie Germain: An Essay in the History of the Theory of Elasticity (1980), provides abundant details on Germain's contributions to elasticity.

* * *

Universalium. 2010.

Look at other dictionaries:

  • Germain , Sophie Marie — (1776–1831) French mathematician The daughter of a prosperous Parisian merchant, Germain showed an early interest in mathematics and from the age of thirteen read whatever texts she could obtain. Although the main higher education institutions… …   Scientists

  • Sophie Germain — (* 1. April 1776 in Paris; † 27. Juni 1831 in Paris) war eine französische Mathematikerin. Gelegentlich wird ihr Todestag auch auf den 26. Juni 1831 datiert. Inhaltsverzeichnis …   Deutsch Wikipedia

  • GERMAIN (S.) — GERMAIN SOPHIE (1776 1831) Née à Paris, Sophie Germain suivit les cours de l’École polytechnique par correspondance (car les femmes n’y étaient pas admises). S’intéressant aux mathématiques, elle devint l’amie de J. L. Lagrange et de C. F. Gauss …   Encyclopédie Universelle

  • Sophie Germain — Pour les articles homonymes, voir Germain (homonymie). Sophie Germain Marie Sophie Germain, née le 1er avril  …   Wikipédia en Français

  • Germain et nous... — Germain et nous… Série Scénario Frédéric Jannin Dessin Frédéric Jannin Genre(s) Franco Belge Humour Nb. d’albums 14 Germain et nous… est une série de bande dessinée franco belge, créée en 1977 par …   Wikipédia en Français

  • Germain Dupré — Germain Dupré, Archives départementales des Hautes Pyrénées Parlementaire français Date de naissance 10 j …   Wikipédia en Français

  • Germain et nous — Germain et nous... Germain et nous... Série Genre(s) Franco Belge Humour Scénario Frédéric Jannin Dessin Frédéric Jannin Coloriste Nombre d’albums Germain et nous… est une série de …   Wikipédia en Français

  • Sophie (bande dessinee) — Sophie (bande dessinée) Pour les articles homonymes, voir Sophie (prénom). Sophie est une série de bande dessinée belge dessinée par Jidéhem, racontant les aventures de Sophie, une jeune fille espiègle et de son papa inventeur. Album 1 L œuf de… …   Wikipédia en Français

  • Germain (Begriffsklärung) — Germain steht für: Ateliers Germain, einen ehemaligen belgischen Autohersteller den männlichen Vornamen Germain Germain ist der Familienname folgender Personen: Abel Anastase Germain (1833–1897), französischer Bischof Alain Germain (* 1948),… …   Deutsch Wikipedia

  • Sophie Joissains — Parlementaire français Date de naissance 25 octobre 1969 (1969 10 25) (42 ans) Mandat Sénatrice Début du mandat 1er octobre …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.