Königsberg bridge problem

a mathematical problem in graph theory, solved by Leonhard Euler, to show that it is impossible to cross all seven bridges of the Prussian city of Königsberg in a continuous path without recrossing any bridge.

* * *

 a recreational mathematical puzzle, set in the old Prussian city of Königsberg (now Kaliningrad, Russia), that led to the development of the branches of mathematics known as topology and graph theory. In the early 18th century, the citizens of Königsberg spent their days walking on the intricate arrangement of bridges across the waters of the Pregel (Pregolya) River, which surrounded two central landmasses connected by a bridge (3). Additionally, the first landmass (an island) was connected by two bridges (5 and 6) to the lower bank of the Pregel and also by two bridges (1 and 2) to the upper bank, while the other landmass (which split the Pregel into two branches) was connected to the lower bank by one bridge (7) and to the upper bank by one bridge (4), for a total of seven bridges. According to folklore, the question arose of whether a citizen could take a walk through the town in such a way that each bridge would be crossed exactly once.

      In 1735 the Swiss mathematician Leonhard Euler (Euler, Leonhard) presented a solution to this problem, concluding that such a walk was impossible. To confirm this, suppose that such a walk is possible. In a single encounter with a specific landmass, other than the initial or terminal one, two different bridges must be accounted for: one for entering the landmass and one for leaving it. Thus, each such landmass must serve as an endpoint of a number of bridges equaling twice the number of times it is encountered during the walk. Therefore, each landmass, with the possible exception of the initial and terminal ones if they are not identical, must serve as an endpoint of an even number of bridges. However, for the landmasses of Königsberg, A is an endpoint of five bridges, and B, C, and D are endpoints of three bridges. The walk is therefore impossible.

      It would be nearly 150 years before mathematicians would picture the Königsberg bridge problem as a graph consisting of nodes (vertices) representing the landmasses and arcs (edges) representing the bridges. The degree of a vertex of a graph specifies the number of edges incident to it. In modern graph theory, an Eulerian path traverses each edge of a graph once and only once. Thus, Euler's assertion that a graph possessing such a path has at most two vertices of odd degree was the first theorem in graph theory.

      Euler described his work as geometria situs—the “geometry of position.” His work on this problem and some of his later work led directly to the fundamental ideas of combinatorial topology, which 19th-century mathematicians referred to as analysis situs—the “analysis of position.” Graph theory and topology, both born in the work of Euler, are now major areas of mathematical research.

Stephan C. Carlson
 

* * *


Universalium. 2010.

Look at other dictionaries:

  • Königsberg bridge problem — a mathematical problem in graph theory, solved by Leonhard Euler, to show that it is impossible to cross all seven bridges of the Prussian city of Königsberg in a continuous path without recrossing any bridge …   Useful english dictionary

  • Seven Bridges of Königsberg — The Seven Bridges of Königsberg is a famous historical problem in mathematics. Its 1736 negative resolution by Leonhard Euler laid the foundations of graph theory and presaged the idea of topology. Description The city of Königsberg in Prussia… …   Wikipedia

  • Grüne Brücke (Königsberg) — Das Brückenschema von Königsberg von 1930 Die Königsberger Brücken über die beiden Arme des Pregel in Königsberg (Preußen) wurden nicht zuletzt durch das mathematisch topologische Königsberger Brückenproblem bekannt, welches 1736 vom Mathematiker …   Deutsch Wikipedia

  • Hohe Brücke (Königsberg) — Das Brückenschema von Königsberg von 1930 Die Königsberger Brücken über die beiden Arme des Pregel in Königsberg (Preußen) wurden nicht zuletzt durch das mathematisch topologische Königsberger Brückenproblem bekannt, welches 1736 vom Mathematiker …   Deutsch Wikipedia

  • Holzbrücke (Königsberg) — Das Brückenschema von Königsberg von 1930 Die Königsberger Brücken über die beiden Arme des Pregel in Königsberg (Preußen) wurden nicht zuletzt durch das mathematisch topologische Königsberger Brückenproblem bekannt, welches 1736 vom Mathematiker …   Deutsch Wikipedia

  • Honigbrücke (Königsberg) — Das Brückenschema von Königsberg von 1930 Die Königsberger Brücken über die beiden Arme des Pregel in Königsberg (Preußen) wurden nicht zuletzt durch das mathematisch topologische Königsberger Brückenproblem bekannt, welches 1736 vom Mathematiker …   Deutsch Wikipedia

  • Kaiserbrücke (Königsberg) — Das Brückenschema von Königsberg von 1930 Die Königsberger Brücken über die beiden Arme des Pregel in Königsberg (Preußen) wurden nicht zuletzt durch das mathematisch topologische Königsberger Brückenproblem bekannt, welches 1736 vom Mathematiker …   Deutsch Wikipedia

  • Krämerbrücke (Königsberg) — Das Brückenschema von Königsberg von 1930 Die Königsberger Brücken über die beiden Arme des Pregel in Königsberg (Preußen) wurden nicht zuletzt durch das mathematisch topologische Königsberger Brückenproblem bekannt, welches 1736 vom Mathematiker …   Deutsch Wikipedia

  • Köttelbrücke (Königsberg) — Das Brückenschema von Königsberg von 1930 Die Königsberger Brücken über die beiden Arme des Pregel in Königsberg (Preußen) wurden nicht zuletzt durch das mathematisch topologische Königsberger Brückenproblem bekannt, welches 1736 vom Mathematiker …   Deutsch Wikipedia

  • Reichsbahnbrücke (Königsberg) — Das Brückenschema von Königsberg von 1930 Die Königsberger Brücken über die beiden Arme des Pregel in Königsberg (Preußen) wurden nicht zuletzt durch das mathematisch topologische Königsberger Brückenproblem bekannt, welches 1736 vom Mathematiker …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.